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Abstract—In this paper we develop a framework to select
a subset of sensors from a field in which the sensors have
an ingrained independence structure. Given an arbitrary inde-
pendence pattern, we construct a graph that denotes pairwise
independence between sensors, which means those sensors can
operate simultaneously. The set of all fully-connected subgraphs
(cliques) of this independence graph can form a set of matroid
constraints over which we maximize a submodular objective func-
tion. Since we choose the objective function to be submodular,
the algorithm returns a near-optimal solution with approximation
guarantees. We also argue that this framework generalizes to any
network with a defined independence structure between sensors,
and intuitively models problems where the goal is to gather
information in a complex environment. We apply this framework
to ping sequence optimization for active multistatic sonar arrays
by maximizing sensor coverage and not only achieve significant
performance gains compared to conventional round-robin sensor
selection, but approach optimal performance as well.

I. INTRODUCTION

Sensor selection problems, or more generally subset selec-

tion problems, are important for many applications in areas

such as machine learning and wireless communications [1]–

[4]. This paper addresses general sensor selection, with a

specific focus on sensor networks with interfering sensors,

and we demonstrate improved performance on active multi-

static sonar arrays [5]. As is the case with most optimiza-

tion problems, it would be advantageous for the problem to

be convex. However, framing sensor selection problems as

convex has two main problems. First, sensor selection has

inherently discrete optimization variables since selecting a

sensor is an absolute choice. One cannot “half-choose” a

sensor, and convex optimization requires continuous variables.

Second, convex optimization is unable to handle dependence

constraints between variables. There is no way to enforce

dependent values between variables in a convex framework,

which means if a pair of sensors interfere, convex optimization

provides no guarantee that the two sensors will not be present

in the solution together.

Submodular function optimization (SFO) provides a more

intuitive framework for handling these two problems, since it

inherently uses set functions and can be constrained to opti-

mize over matroids. Matroids are a structure that generalize

the notion of linear independence from vector spaces to set

Fig. 1: General system diagram for sensor selection.

systems, and can be used to form constraints in SFO. They

will be addressed further in Section II.

The main focus of this paper is modeling sensor networks

as graphs and then using the graph structure to form matroid

constraints in submodular function optimization. SFO can

handle constraints that make problems nonconvex or non-

polynomial (NP) hard and find polynomial time solutions that

are provably optimal or are near-optimal with performance

guarantees [6]. As we will show in Section II, modeling sensor

network interference patterns as an independence graph can

be folded directly into SFO as a series of matroid constraints

[7], [8]. We apply this approach to active multistatic deep-

water sonar arrays, or ping sequence optimization (PSO), in

which we repeatedly optimize to select a subset of buoys

that maximize a probabilistic coverage metric. We detail this

application in Section III. In order to demonstrate the superior

utility of the proposed approach, called SFO-Greedy, we

compare the performance of SFO with matroid constraints to

the standard round-robin sensor selection, single buoy, and

exhaustive search approaches in Section IV.

II. SUBMODULARITY AND INDEPENDENCE GRAPHS

The binary nature of sensor selection makes optimization

difficult. Typically, one represents the sensor nodes in an

indicator vector with a selected sensor node as ones and

unselected sensor nodes as zeros. These independence con-

straints make optimization problems nonconvex. One of the

main contributions of this paper is modeling independence

constraints on the sensor networks.

Submodularity is a property that describes set functions

similar to how convexity describes functions in a continuous

space. For ping sequence optimization, submodular functions

can be used to find optimal subsets of buoys to achieve
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objectives like maximizing coverage of non-interfering buoys,

or maximizing probability of target detection in a target

tracking scenario. Rather than exhaustively searching over all

combinations of subsets, submodular functions provide a fast

and tractable framework to compute a solution [6], [9], [10].

Let the set of available objects, known as the ground set,

be denoted as V . A submodular function f maps a set of

objects denoted by a binary indicator vector of length V to

a real number. The binary indicator vector is represented by

the expression 2V since the variable can take two values and

has length V . As mentioned previously, a value of 1 or 0 for

the ith element of the indicator vector denotes the inclusion or

exclusion of of the ith element of the ground set V . Therefore,

we can define a submodular function f with the following

inequality.

Definition: A function f : 2V → R is submodular if for

any A,B ⊆ V

f (A) + f (B) ≥ f (A ∪B) + f (A ∩B) (1)

Note that inequality is very similar to the definition of a

convex function, and in fact, submodularity can be viewed as

a discrete analog to convexity [9].

More intuitively, submodularity can be expressed by the

notion of diminishing returns. This means that the incremental

value of the objective function shrinks as more elements of the

ground set are added. Drawn out for a particular sequence of

elements, the objective function looks like either a concave or

convex function sampled at equal intervals. An alternate but

equivalent definition is as follows.

A function f : 2V → R is submodular if for any A ⊆ B ⊂
V and v ∈ V \B

f (A ∪ {v})− f (A) ≥ f (B ∪ {v})− f (B) (2)

This is the notion of diminishing returns.

Submodularity is very closely tied to structures known as

matroids, which generalize the notion of linear independence

in vector spaces [7]. One can think of matroids as a general-

ization of matrices, which extend the definition of rank beyond

column vectors to arbitrary independent subsets of a ground

set. More importantly, SFO allows for matroid constraints

on the problem, which means you can encode complicated

variable dependence patterns into the problem and obtain

polynomial time solutions. The pair (V, I) is a matroid if the

family of sets I satisfies the following three properties:

1) ∅ ∈ I
2) I1 ⊆ I2 ∈ I
3) I1, I2 ∈ I, |I1| < |I2| =⇒ ∃v ∈ I2\I1 : I1 ∪ v ∈ I

This leads us to the independence graphs, where nodes

on the graph represent sensors and edges denote pairwise

independence between sensors. An edge between two sensors,

in other words, means both sensors can be used at the same

time. For this setup, the nodes in any fully connected subgraph

(clique) is an allowable subset. The set of all cliques from

this independence graph G can form a partition matroid if the

stable sets of the complimentary graph Ḡ form a partition [11].

Unfortunately, this is not true in general for the independence

graphs generated from the interference patterns in a sensor

field. In these cases, the set of all cliques can be represented

by a set of n matroids, where n equals the number of

maximum size cliques of the graph G. To prove this, consider

a maximum size clique C in G. Let the independent set be

I = {I|I ⊆ C} and the ground set be C. I satisfies the

first property because the empty set is a subset of every set.

I satisfies the second property because every subset of C is

included in the definition. It is easy to see that I satisfies

the third property, which is also referred to as the basis

exchange property. Consider two subsets C1, C2 ⊆ C such

that |C1| < |C2|. Adding any element i ∈ C2\C1 to C1

will necessarily be a subset of C since i ∈ C and C1 ⊂ C.

Therefore, (C, I) is a matroid, and n maximum size cliques of

a graph can be converted into n matroids. An example of the

independence graph is in Fig. 2d. By turning the interference

pattern of a sensor field into a set of matroid constraints, we

can guarantee that two interfering sensors will not be chosen

in the solution.

III. APPLICATION TO PING SEQUENCE OPTIMIZATION

We apply this sensor selection framework to active sonar

arrays, where each buoy has a co-located transmitter and

receiver that operates monostatically. However, since SFO

allows for multiple buoys to be selected, the array functions

multistatically in that multiple receivers are operating simulta-

neously and at potentially overlapping regions. An example of

a spatial buoy arrangement where some of the buoys interfere

can be found in Figs. 2a, 2b, and 2c. The four buoys are

arranged in a diamond pattern with locations represented by

black dots. In Fig. 2a, the blue rings denote the coverage

regions for each buoy and the red rings in Fig. 2b denote the

regions where another buoy will interfere with a given buoy.

Coverage is defined by the probability of target detection for

a buoy. If two interfering buoys transmit simultaneously, the

direct path signal from the first will arrive at the second when

the second buoy’s reflections would arrive. The relationship

between the coverage and interference regions for the buoys

can be found in Fig. 2c. In this arrangement, the buoys across

from each other, i.e. the top and bottom pair and left and right

pair, will interfere with each other, since the buoys in each pair

are in the red interference region of the other buoy. However,

any other pair of buoys can ping simultaneously [5].

We go beyond the conventional approach for buoy selection

by allowing for simultaneous pinging. Specifically, we can

select buoys based on target state that significantly improve

the system’s ability to track existing targets and search for new

targets. We demonstrate the increase in performance compared

to a conventional round-robin approach and optimized single

buoy selection. In addition, our approach allows for simulta-

neous search and track objectives within the system.

In order to find out the maximum number of buoys that

can ping simultaneously, the largest set of nodes is picked

such that all the nodes in the set are connected to every

node in the set. Note that self-loops are implied, since a
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(a) Four buoys (black dots) with coverage regions (blue rings). (b) Four buoys (black dots) with interference regions (red rings).

(c) Four buoys (black dots) with coverage regions (blue rings) and
interference regions (red rings).

(d) Independence graph for four buoys as nodes with edges that signify
pairwise independence.

Fig. 2: Relationship between the independence graph, coverage regions and interference regions for a four buoy arrangement.

buoy does not interfere with itself. The problem of finding

the largest subset of fully connected nodes is a well known

problem in computer science [12]. Exact methods for solving

this problem run in exponential time, but for reasonable graph

sizes (a hundred vertices), the algorithm runs fairly quickly.

For example, if the graph meets certain conditions, i.e. if the

graph is “planar” or “perfect,” finding the largest clique can be

solved in polynomial time [13]. For the arrangement in Fig. 2c,

there is a four-way tie for largest clique, which are the adjacent

pairs (top and left buoys, left and bottom buoys, bottom and

right buoys, and right and top buoys). The independence graph

for this arrangement is depicted in Fig. 2d. In a real scenario,

the detection regions will not be perfect rings, so one of the

pairs might have better coverage than the others. A more

complicated interference pattern will emerge as the number

of buoys is increased, which is demonstrated in Fig. 3.

Our objective function is a variant of probabilistic coverage.

It utilizes target state estimates to help determine which buoys

are selected. Let V be the set of N buoys bi, i = 1...N .

Let B ⊆ V such that B is a clique of G, where G is the

independence graph determined by the interference pattern of

all the buoys bi in V . Let the set of all sets of sensors that form

cliques on the graph be a partition matroid I. Coverage is a

positive, non-decreasing objective, so the goal is to maximize

the objective function. Then the optimal set of buoys is given

by

B∗ = argmax
B∈I

1

M

M∑

φ=1

fφ (B) (3)

where φ = 1, ...,M corresponds to the predicted target

locations and M is the number of targets. The functions

fφ : 2V → R are given by the equation

fφ (B) = 1−
∏

bi∈B

(1− Pφ,bi) (4)

where Pφ,bi is the probability of detection of buoy bi at

location φ determined by a table look-up for pre-computed

probability of detection maps for each buoy.
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Fig. 3: Independence graph for the nine buoys in a 3x3 grid.

We use the greedy algorithm from the SFO toolbox to

solve the above optimization problem [10]. This submodular

objective function is monotonic non-decreasing and subject to

a matroid constraint. Submodular maximization for functions

of this form have been studied and have certain performance

guarantees. For a monotonic non-decreasing objective function

subject to a matroid constraint, the solution has a worse case

performance bound of 1

2
, and the bound scales with the number

of matroids, i.e. for k matroid constraints the worst case

performance bound is 1

k+1
[14].

Our approach is tracking-centric in that the objective prior-

itizes covering areas where known targets are located, but it

provides good coverage as well. After the algorithm addresses

coverage of the known targets, it adds as many non-interfering

buoys as are available, and thus provides an effective simul-

taneous track and search framework.

IV. EXPERIMENTAL RESULTS

In this section we compare the performance of the proposed

ping sequence optimization algorithm, SFO-Greedy, to the

standard round-robin approach, optimized single buoy selec-

tion, and exhaustive search in a Monte Carlo simulation. For

the experiment, we have nine buoys in a grid pattern, with

each buoy 60 km away from its neighbors. The independence

graph for the buoys can be found in Fig. 3, and the interference

pattern in Fig. 4. We assume the buoys have a probability of

detection of P = 0.8 in the coverage region and P = 0
everywhere else. We assume here that there is no sensor

drift during the experiment. Two targets with random initial

location, constrained to be within the buoy array’s detection

area, and constant velocities are present for each trial. The

experiment consisted of ten thousand trials, and each trial

lasted thirty time-steps or until a target moved out of the

array’s detection area.

For each trial, we initialize the target location and velocity

and pass the initial state estimates into the SFO algorithm.

Based on the objective function output for each target, we sam-

ple the probability that each target has a successful detection

at the next time step and pass in the updated state estimates

for the detected targets. For the round-robin algorithm, we

simply choose the next buoy in the sequence and calculate its

objective function value, and for the optimized single buoy

Fig. 4: Interference pattern for the nine buoys in a 3x3 grid.

selection, we greedily choose the buoy that provides the best

coverage according to the objective function in (3). We also

compare the proposed algorithm to an exhaustive search over

all possible combinations of non-interfering buoys to see how

close to optimal the greedy approximation is.

Over the course of the trial, we accumulate the objective

function values which form a cumulative probability of detec-

tion (CPD) score for the two algorithms. The mean probability

of detection (PD) scores for each algorithm can be found in

Table I, and a plot of the PD scores over the different trials is

found in Fig. 5.

The results in Table I and Fig. 5 demonstrate the practical

utility of the proposed method. A round-robin approach to

sensor selection detected the targets about 7% of the time on

average, whereas the proposed SFO-Greedy approach detected

the targets over 30% of the time. In addition, the greedy algo-

rithm performed nearly as well as an exhaustive search over all

sets of non-interfering buoys. The results also demonstrate the

advantage of using multiple buoys. By allowing simultaneous

pinging, we gained 50% better coverage over optimized single

buoy selection. The size of the error-bars in Fig. 5 can be

attributed to the fact that nine buoys have gaps in their overall

coverage, so many simulated targets were impossible to detect

given the arrangement. However, in no trial did the round-

robin approach beat the proposed algorithm. The worst case

bound for the greedy algorithm provides a nice floor for worst-

case behavior, but in practice the algorithm is as good as

exhaustively searching over exponential growing sets of non-

interfering buoys.

TABLE I

Single Buoy Multiple Buoys
Method Round-

robin
SFO-Greedy

(Proposed)

Exhaustive
search

SFO-Greedy

(Proposed)

Mean PD 0.068 0.210 0.320 0.315

Probability of detection (PD) results for Monte Carlo simulation.
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Fig. 5: Probability of detection (PD) results for Monte Carlo

simulation comparing the proposed SFO-Greedy method to

a round-robin strategy for single buoy selection, and SFO-

Greedy to exhaustive search for multiple buoy selection.

V. CONCLUSION

In applying independence graphs to a sensor selection

problem, we demonstrate the utility of submodular function

optimization (SFO) to the problem domain. Specifically for

ping sequence optimization (PSO), SFO allows us go beyond

the standard approach for buoy selection by allowing for

simultaneous pinging. By posing the PSO as a submodular

optimization problem, we are able to derive near-optimal so-

lutions for combinatorial problems. We can select buoys based

on target state that significantly improve the probability of

detecting targets over a standard approach and achieve equiv-

alent performance to an optimal exhaustive search approach.

Moreover, our approach allows for simultaneous search and

track objectives within the system.

We also demonstrate the theoretical advantages of SFO over

convex optimization for sensor selection. Carefully framing

sensor selection problems as convex has two main problems:

the inability to handle discrete optimization variables and inde-

pendence constraints. Submodular function optimization pro-

vides a more intuitive framework for handling these two prob-

lems. It inherently uses set functions and can be constrained

to optimize over matroids, which can be used to encode

complex independence patterns between sensors. Not only can

our proposed use of submodular function optimization handle

complex constraints, but it provides guaranteed near-optimal

polynomial time solutions to combinatorial problems.
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